H=16t^2+122t+25

Simple and best practice solution for H=16t^2+122t+25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=16t^2+122t+25 equation:



=16H^2+122H+25
We move all terms to the left:
-(16H^2+122H+25)=0
We get rid of parentheses
-16H^2-122H-25=0
a = -16; b = -122; c = -25;
Δ = b2-4ac
Δ = -1222-4·(-16)·(-25)
Δ = 13284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{13284}=\sqrt{324*41}=\sqrt{324}*\sqrt{41}=18\sqrt{41}$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-122)-18\sqrt{41}}{2*-16}=\frac{122-18\sqrt{41}}{-32} $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-122)+18\sqrt{41}}{2*-16}=\frac{122+18\sqrt{41}}{-32} $

See similar equations:

| x(2x-3)=-3x | | x10+5=−1 | | 3u+6=-2(u+7) | | -5+4a-2a=3a-1 | | 2q+429=887 | | 7x+5+3x-5=90,x | | 78=3(1+5x) | | 23/12=x/60 | | (18x)+.75(2x)+.5(x)+.25(x)=10,400 | | x^2-2/3x+1/9=1 | | 3(v+3)+5v=2v+39 | | x+27=97 | | 2x+6=4x-20 | | p/2+2=8 | | 2-8n=-14 | | 6q−-13=79 | | 21=-3/4u | | 12-2x+-10=9 | | 3n/4=3 | | -7(6-x)=-42 | | 8/x=3/10 | | 64u-5.1u=-3.25 | | 20+40y=1000 | | 7x+5+90+3x-5=180,x | | 8+11x=-179 | | -7(6-x=-42 | | (5x-10)=(-7x+14) | | 3x^2-14x+36=0 | | 3x=-4x+14 | | 30=4h+6 | | 3x^2-14+36=0 | | 9n−29=61 |

Equations solver categories